This is a demo store for testing purposes — no orders shall be fulfilled. Dismiss
MLA-C01日本語練習問題 & MLA-C01資格認定
P.S.CertShikenがGoogle Driveで共有している無料の2025 Amazon MLA-C01ダンプ:https://drive.google.com/open?id=1yXgypTrzFqU4QG3df4QkpEk3A2alXV5_
競争力が激しい社会に当たり、我々CertShikenは多くの受験生の中で大人気があるのは受験生の立場からAmazon MLA-C01試験資料をリリースすることです。たとえば、ベストセラーのAmazon MLA-C01問題集は過去のデータを分析して作成ます。ほんとんどお客様は我々CertShikenのAmazon MLA-C01問題集を使用してから試験にうまく合格しましたのは弊社の試験資料の有効性と信頼性を説明できます。
IT業種を選んだあなたは現状に自己満足することはきっとないですね。現在、どの業種の競争でも激しくなっていて、IT業種も例外ないですから、目標を立ったら勇気を持って目標を達成するために頑張るべきです。その中で、AmazonのMLA-C01試験に受かることも競争力があるモードです。この試験に合格したら、あなたのITキャリアには明るい未来があるようになります。あなたを助けるために、我々のCertShikenは真実かつ正確なトレーニング資料を提供します。CertShikenを利用したら、あなたはきっと自分の理想を実現することができます。
Amazon MLA-C01資格認定 & MLA-C01技術試験
CertShikenのAmazonのMLA-C01試験トレーニング資料は正確性が高くて、カバー率も広いです。それは君の文化知識を増強でき、君の実践水準も増強でき、君をIT業種での本当のエリートになって、君に他人に羨ましい給料のある仕事をもたらすことができます。うちのAmazonのMLA-C01試験トレーニング資料を購入する前に、CertShikenのサイトで、一部分のフリーな試験問題と解答をダンロードでき、試用してみます。
Amazon MLA-C01 認定試験の出題範囲:
トピック
出題範囲
トピック 1
トピック 2
トピック 3
トピック 4
Amazon AWS Certified Machine Learning Engineer - Associate 認定 MLA-C01 試験問題 (Q13-Q18):
質問 # 13
A company has an ML model that generates text descriptions based on images that customers upload to the company's website. The images can be up to 50 MB in total size.
An ML engineer decides to store the images in an Amazon S3 bucket. The ML engineer must implement a processing solution that can scale to accommodate changes in demand.
Which solution will meet these requirements with the LEAST operational overhead?
正解:C
解説:
SageMaker Asynchronous Inference is designed for processing large payloads, such as images up to 50 MB, and can handle requests that do not require an immediate response.
It scales automatically based on the demand, minimizing operational overhead while ensuring cost-efficiency.
A script can be used to send inference requests for each image, and the results can be retrieved asynchronously. This approach is ideal for accommodating varying levels of traffic with minimal manual intervention.
質問 # 14
A company needs to create a central catalog for all the company's ML models. The models are in AWS accounts where the company developed the models initially. The models are hosted in Amazon Elastic Container Registry (Amazon ECR) repositories.
Which solution will meet these requirements?
正解:B
解説:
The Amazon SageMaker Model Registry is designed to manage and catalog ML models, including those hosted in Amazon ECR. By creating a model group for each model in the SageMaker Model Registry and setting up cross-account resource policies, the company can establish a central catalog in a new AWS account.
This allows all models from the initial accounts to be accessible in a unified, centralized manner for better organization, management, and governance. This solution leverages existing AWS services and ensures scalability and minimal operational overhead.
質問 # 15
A company is gathering audio, video, and text data in various languages. The company needs to use a large language model (LLM) to summarize the gathered data that is in Spanish.
Which solution will meet these requirements in the LEAST amount of time?
正解:C
解説:
Amazon Transcribeis well-suited for converting audio data into text, including Spanish.
Amazon Translatecan efficiently translate Spanish text into English if needed.
Amazon Bedrock, with theJurassic model, is designed for tasks like text summarization and can handle large language models (LLMs) seamlessly. This combination provides a low-code, managed solution to process audio, video, and text data with minimal time and effort.
質問 # 16
An ML engineer is using Amazon SageMaker to train a deep learning model that requires distributed training.
After some training attempts, the ML engineer observes that the instances are not performing as expected. The ML engineer identifies communication overhead between the training instances.
What should the ML engineer do to MINIMIZE the communication overhead between the instances?
正解:B
解説:
To minimize communication overhead during distributed training:
1. Same VPC Subnet: Ensures low-latency communication between training instances by keeping the network traffic within a single subnet.
2. Same AWS Region and Availability Zone: Reduces network latency further because cross-AZ communication incurs additional latency and costs.
3. Data in the Same Region and AZ: Ensures that the training data is accessed with minimal latency, improving performance during training.
This configuration optimizes communication efficiency and minimizes overhead.
質問 # 17
An ML engineer trained an ML model on Amazon SageMaker to detect automobile accidents from dosed- circuit TV footage. The ML engineer used SageMaker Data Wrangler to create a training dataset of images of accidents and non-accidents.
The model performed well during training and validation. However, the model is underperforming in production because of variations in the quality of the images from various cameras.
Which solution will improve the model's accuracy in the LEAST amount of time?
正解:B
解説:
The model is underperforming in production due to variations in image quality from different cameras. Using the corrupt image transform with the impulse noise option in SageMaker Data Wrangler simulates real-world noise and variations in the training dataset. This approach helps the model become more robust to inconsistencies in image quality, improving its accuracy in production without the need to collect and process new data, thereby saving time.
質問 # 18
......
何の努力と時間もなくてAmazonのMLA-C01試験に合格するのは不可能です。しかし、我々CertShikenチームは力を尽くしてあなたのAmazonのMLA-C01試験を準備する圧力を減少して規範的な模擬問題と理解しやすい解答分析はあなたにAmazonのMLA-C01試験に合格するコツを把握させます。試験に失敗したら、あなたのAmazonのMLA-C01試験の成績書を提供して確認してから我々はすべての費用をあなたに払い戻します。CertShikenはあなたの信頼を得る足ります。
MLA-C01資格認定: https://www.certshiken.com/MLA-C01-shiken.html
無料でクラウドストレージから最新のCertShiken MLA-C01 PDFダンプをダウンロードする:https://drive.google.com/open?id=1yXgypTrzFqU4QG3df4QkpEk3A2alXV5_